Genes

4. Inheritance

CONCEPT 2

LESSON GUIDE

MODELLING INHERITANCE

PRECISE LEARNING POINTS

KNOW

I know the role chromosomes play in fertilisation.

APPLY

I can apply my knowledge to explain how dominant and recessive genes are inherited.

EXTEND

I can extend my knowledge to calculate the probability of children having certain inherited characteristics or disorders.

NOTES

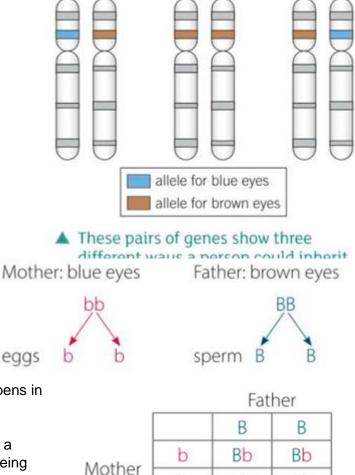
1. How is genetic material inherited?

- Sexual reproduction is the way genetic information from two different individuals can be combined to give a new and unique individual.
- Inside the nucleus of your cells the 46 chromosomes are arranged into 23 pairs
- One copy from each pair comes from your father, and one from your mother.
- Egg and sperm cells (gametes) are the only cells to contain 23 chromosomes. They only have one copy of each chromosome.
- During fertilisation, the egg and sperm cells join together. When their nuclei join, their chromosomes pair, producing an embryo with 46 chromosomes.
- Therefore, every individual has two copies of the same gene.

2. Which characteristics will you inherit?

- A gene is a segment of DNA which provides information that specifies the possible gene products (eg proteins)
- For any gene, a number of different versions (alleles) may exist
- Each version contains slightly different sequence of bases (information) and so results in slightly different products.
- Each individual has two copies of the same gene.
- Some alleles (versions of a gene) will always produce a characteristic in an organism, they are called **dominant** alleles. An individual only needs one copy of a dominant allele for the characteristic to be expressed in the organism eg allele for brown eyes is a dominant allele. If you inherit this allele from your mother, father or both, you will have brown eyes.

• The allele for blue eye colour is a **recessive** allele. You need two copies of a recessive allele for this characteristic to be expressed and so must inherit this blue eye version of the gene from both your mother and your father.


Can characteristics be predicted?

When a sperm fertilises an egg, genes from the mother join with genes from the father. Scientist are able to predict what an organism's offspring will look like by doing a **genetic cross**.

In a genetic cross, alleles are represented by letters. The dominant allele is represented by a capital letter, and the recessive allele by the same, lowercase letter e.g. B for dominant brown eye allele and b for recessive blue eye allele.

Scientists use **Punnett squares** to show what happens in a genetic cross.

Scientists often display the possible outcomes from a genetic cross as the probability of a characteristic being expressed. This could be in the form of a ratio, a percentage or a fraction.

b

Bb

Bb