# Matter

# 4. Elements

### **CONCEPT 3**

#### TEST YOURSELF

### **CERAMICS, POLYMERS AND COMPOSITES**



- Q1 Polymers can be broken down to the molecules they are made from. Is this a physical or a chemical change?
- Q2 What are the similarities between synthetic polymers and natural polymers?
- Q3 List 3 items made from ceramics in your home.
- Q4 Ceramic materials have been uncovered from earliest human history. What does this tell you about the nature of ceramics?



- Q5 Why is it useful to store small molecules (such as glucose) in the form of polymers (such as starch)?
- Q6 Plants store sugar in the form of starch; animals store it in the form of glycogen. What prediction(s) can you make about glycogen?
- Q7 Describe some examples of uses of synthetic polymers in place of metals.
- Q8 Draw a table to compare the properties of ceramics with metals.
- Glass and carbon fibres are strong and lightweight. What makes glass and carbon fibres a Q9 popular choice as reinforcers?



- Q10 Do you think that polymers are chemically the same as the monomers that make them? Explain your answer.
- Suggest why ceramics Q11 may be chosen over metals to make turbo-jet engine blades.

| Type of<br>material | Material        | Density<br>(g/cm³) | Strength<br>(MPa)* | Strength/<br>weight ratio |
|---------------------|-----------------|--------------------|--------------------|---------------------------|
| composite           | fibreglass      | 1.9                | 3400               | 1307                      |
| composite           | carbon fibre    | 1.6                | 4300               | 2457                      |
| metal               | aluminium       | 2.8                | 600                | 214                       |
| metal               | stainless steel | 7.86               | 2000               | 254                       |
| composite           | concrete        | 2.3                | 12                 | 4.35                      |

<sup>\*</sup>The pressure needed to squash the material until it breaks.

What conclusions can you draw from the data in the table above? Q12